skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hambardzumyan, Lianna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The purpose of this article is to initiate a systematic study of dimension-free relations between basic communication and query complexity measures and various matrix norms. In other words, our goal is to obtain inequalities that bound a parameter solely as a function of another parameter. This is in contrast to perhaps the more common framework in communication complexity where poly-logarithmic dependencies on the number of input bits are tolerated. Dimension-free bounds are also closely related to structural results, where one seeks to describe the structure of Boolean matrices and functions that have low complexity. We prove such theorems for several communication and query complexity measures as well as various matrix and operator norms. In several other cases we show that such bounds do not exist. We propose several conjectures, and establish that, in addition to applications in complexity theory, these problems are central to characterization of the idempotents of the algebra of Schur multipliers, and could lead to new extensions of Cohen’s celebrated idempotent theorem regarding the Fourier algebra. 
    more » « less